Underwater robotics: Analyzing the propulsion of a soft robotic fish
نویسنده
چکیده
In the world of underwater robotics, fish-like structures are able to accelerate and maneuver better than most other artificial underwater vehicles. For these reasons, fish-like robots are well suited for submarine exploration tasks. However, a complete understanding of mechanisms governing the swimming movements of fish-like robots remains elusive, limiting the performance of such underwater robot.
منابع مشابه
Bio-harmonized Dynamic Model of a Biology Inspired Carangiform Robotic Fish Underwater Vehicle ?
This paper presents a novel dynamic model of a bio-inspired robotic fish underwater vehicle by unifying conventional rigid body dynamics and bio-fluid-dynamics of a carangiform fish swimming given by Lighthill’s (LH) slender body theory. It proposes an inclusive mathematical design for better control and energy efficient path travel for the robotic fish. The system is modeled as an 2-link robot...
متن کاملExploration of underwater life with an acoustically controlled soft robotic fish
Closeup exploration of underwater life requires new forms of interaction, using biomimetic creatures that are capable of agile swimming maneuvers, equipped with cameras, and supported by remote human operation. Current robotic prototypes do not provide adequate platforms for studying marine life in their natural habitats. This work presents the design, fabrication, control, and oceanic testing ...
متن کاملPerformance of Very Small Robotic Fish Equipped with CMOS Camera
Underwater robots are often used to investigate marine animals. Ideally, such robots should be in the shape of fish so that they can easily go unnoticed by aquatic animals. In addition, lacking a screw propeller, a robotic fish would be less likely to become entangled in algae and other plants. However, although such robots have been developed, their swimming speed is significantly lower than t...
متن کاملDesign and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces
This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin i...
متن کاملKinematic study and implementation of a bio-inspired robotic fish underwater vehicle in a Lighthill mathematical framework
This paper has focused on the formulation of the biological fish propulsion mechanism given by Sir J. Lighthill mathematical slender body theory for a bio-inspired robotic fish. A 2-joint, 3-link multibody vehicle model biologically inspired by a body caudal fin (BCF) carangiform fish propulsion is designed. The objective is to investigate and show that a machine mimicking real fish behavior ca...
متن کامل